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the efficiency of a low order scheme can be improved with
grid adaptivity [1, 3–11], a high density of elements is stillClassical cell centered discretization of the reservoir simulation

pressure equation on an h-adaptive grid results in an O(1/h) leading required in the locally refined regions.
truncation error at the grid interface. A new flux continuous finite For many problems, regions of interest with large flow
volume correction is presented together with an improved version gradients occupy only a small percentage of the flow do-of a previously proposed correction. While both corrections elimi-

main at any given time, and therefore the ability to performnate the leading error, the new correction exhibits the best conver-
dynamic local mesh refinement in regions of interest isgence rates and has the following properties: the resulting matrix

is in general symmetric positive definite, diagonally dominant for highly desirable. Benefits of increased accuracy and re-
locally isotropic spatially varying coefficients, convergence to O(h) duced computational cost have been achieved by coupling
is demonstrated, and support of the standard approximation is re-

dynamic multilevel grid adaptivity with a higher order ac-tained, ensuring a fully implicit implementation. Results computed
curate space–time monotonicity preserving Godunovby the uncorrected classical scheme and both correction schemes

are compared for two phase flow simulations with multilevel dy- scheme both for uniform homogeneous and heterogeneous
namic local grid refinement. Q 1996 Academic Press, Inc. permeability fields, respectively [12, 13]. For a given level

of grid refinement, the adaptive high order scheme is up
to a factor of four times faster than the first-order single

1. INTRODUCTION point upstream weighting scheme employing a uniform
grid of the same level, while producing results of far supe-Reservoir simulation involves solving a coupled system
rior quality [14].of hyperbolic or parabolic conservation laws for compo-

A cell centered finite volume discretization of the flownent densities and an elliptic or parabolic equation for the
equations is employed in constructing the adaptive higherpressure. The coupling between the equations is via the
order scheme. In a cell centered formulation the flow do-fluid velocity, defined by Darcys law to be proportional to
main is represented by a grid of quadrilateral cells. Allthe pressure gradient. Analogous mixed systems of partial
rock and flow variables including saturations, concentra-differential equations occur in other areas of fluid dynamics
tions, and pressures are defined at the cell centers and thesuch as the incompressible Euler and Navier–Stokes equa-
flow equations are integrated over each cell using the Gausstions, and the techniques discussed here are applicable in
flux theorem. The discrete cell face fluxes are then con-those areas. The particular equation set solved here is
structed from approximations based on the cell centereddescribed in the results section.
variables. Details of the hyperbolic scheme are given inThe desire to perform increasingly finer scale simulations
[14]. The cell centered pressure equation approximationis growing with developments in computer hardware and
is described below. Use of such a discretization for thereservoir description techniques. The general spatial distri-
pressure equation results in a local leading truncation errorbution of reservoir rock properties such as permeability
of O(1/h) when applied to h-adaptive grids with local re-and porosity are provided by reservoir description tech-
finement [1–3].niques, which generate fine scale permeability maps (or

An analysis of the scheme on large aspect ratio gridsrealizations) by statistical techniques according to known
reveals that the error coefficient is proportional to gridgeological data, seismic, and well measurements. The mul-
interface ratio, grid aspect ratio, permeability, and the pres-titude of fine scale realizations increases both the number
sure gradient acting tangentially to the grid interface, bor-of simulations to be performed per reservoir process and
dering differing levels of grid refinement. Results are pre-resolution requirements in terms of grid cells employed.
sented which show that on small aspect ratio grids theThus the need for accurate and efficient numerical methods
O(1/h) error can have a small or negligible effect uponin reservoir simulation is paramount. Many existing com-

mercial simulators still use low order methods and while the solutions [15]. Provided that tangential flow gradients
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ratio constraint Gr 5 2), ensuring grid regularity with re-
spect to discretization error which is discussed below.
Adaptivity and criteria for deciding when to refine/unre-
fine an element are discussed in [2, 12–14].

Classical Finite Volume Discretization of the
Pressure Equation

In this paper the focus is on the discretization of theFIG. 1. Adaptive interface (ratio 5 2).
diagonal anisotropic pressure equation

remain sufficiently small, convergence is expected [3].
However, for flow in a vertical cross section it has been 2 S ­
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­x

1
­
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­yD5 q, (2.1)

shown that the local error can have a significant impact
on the solution [2]. Computations presented here involve

where k 5 (kx(x, y), ky(x, y)) is a diagonal tensor. Theflow with significant gradients tangential to h-adaptive grid
domain V is partitioned into a grid of quadrilateral cellsinterfaces and the effect of the leading error is clearly
Vi and a discrete permeability ki and pressure pi is associ-demonstrated for large aspect ratio grids.
ated with the center of each cell. A cell centered approxi-In this paper a new flux continuous correction [15] is
mation of the pressure equation for quadrilateral grids withpresented, together with an improved version of a pre-
local refinement is derived via an application of the Gaussviously proposed explicit correction [1, 2]. While both cor-
flux theorem to Eq. (2) over each cell Vi to obtainrections eliminate the leading error, the new correction

exhibits the best rates of computed convergence. The com-
2 O

j
nj ? kj=pDsj 5 qi Ai , (2.2)parative simplicity of the new scheme facilitates a fully

implicit implementation, whereas the more complicated
correction scheme is implemented explicitly.

where qi Ai is the sum of the mass flow rate and integralThe new (finite volume) scheme is specifically designed
of the gravity term, Ai is the area of the ith cell, j is theto remove the leading error, ensure flux continuity, and
local number of cell faces and has a maximum value thatmaintain local mass conservation. Other properties in-
varies between 4 and 8 on adaptive grids, nj and Dsj areclude: a symmetric positive definite matrix for discrete
the outward unit normal vector and length of the jth cellanisotropic coefficients, diagonally dominant for discrete
face, respectively, kj is the cell face coefficient (transmissi-locally isotropic coefficients, convergence to O(h) is shown
bility) which must be defined such that pressure and fluxfor a local refinement interface, and support of the standard
are continuous (see Section 4). Approximation of the jthapproximation is retained, ensuring that the original matrix
face normal flow gradient by a classical cell centered differ-structure is unchanged. Effort in implementation is mini-
ence results inmal, with only a change in coefficients of the standard

scheme at the interfaces. The merits of this approximation
nj ? k=p 5 kj( pk 2 pi)/Dnik , (2.3)are weighed against those of the standard approximation

and the improved explicit correction scheme [2]. Com-
where pk is the pressure at the center of the kth neighbour-puted velocity and pressure convergence rates are shown
ing cell and Dnik is the distance between the ith and kthfor all three schemes. The effect of each discretisation is
cell centers in the direction normal to face j, Fig. 1. Thealso illustrated for multilevel dynamically adaptive two
integral approximation (2.2) ensures local conservation,phase flow simulations.
diagonal dominance, and a symmetric positive definite ma-

2. THE DISCRETE PRESSURE EQUATION WITH trix for any locally refined quadrilateral grid. We note in
LOCAL GRID REFINEMENT passing that if the discrete equation is not integrated so

that, instead of (2.2), we solve for p directly from
Adaptivity

Key ingredients of the adaptive method are its ability 2oj nj ? kj=pDsj

Ai
5 qito refine an element, which consists of subdivision of a

quadrilateral cell (father) into four cells (sons), and unre-
fine an element, i.e., remove the four sons and replace them then while local conservation is maintained the discrete

matrix would only be symmetric in shape and nonsymmet-by the father [16]. Here multilevel refinement is performed
such that the maximum number of cells adjacent to a given ric in coefficients even for a regular nonuniform grid due

to the variation in cell areas Ai .element face is limited to two (Fig. 1) (i.e., the grid interface
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local velocity errors of

6Arkx
Gr 2 1 ­p
Gr 1 1 ­y

(2.6)

which in turn contribute leading discretisation errors of

6kx
ArGr(Gr 2 1) ­p

Hx(Gr 1 1) ­y
1 O(1), (2.7)

FIG. 2. Interface: Pressure locations for orthogonal flux. where ­p/­y is the pressure gradient tangential to the inter-
face. Alternatively the errors at an interface tangential to
the x axis are obtained from (2.7) by interchanging x and
y to give

Error Analysis of the Classical Finite Volume Scheme

Approximation of a normal derivative by the standard
6ky

ArGr(Gr 2 1) ­p
Hy(Gr 1 1) ­x

1 O(1), (2.8)difference of cell centered quantities at an adaptive grid
interface can inevitably lead to a severe error, since a line
joining coarse and fine adjacent cell centers across the where now Ar 5 hx/hy .
interface is strictly nonorthogonal to the interface and the The errors are proportional to the local tangential flow
resulting approximate derivative is skew to the fine-cell gradient, both of the respective grid interface and aspect
(Fig. 2). A summary of the truncation error analysis [2] of ratios and permeability. For the h-adaptive grid data struc-
the above scheme at an adaptive grid interface follows. ture used here Gr 5 2, which minimizes the error in the

We consider a locally refined grid with an interface tan- standard discretization with respect to interface ratio. De-
gential to the y direction having coarse and fine cell dimen- spite the O(1/h) error, results displayed below show that
sions of (Hx , Hy) and (hx , hy), respectively. The coarse this scheme can still be effective for small aspect ratio or
and fine cell dimensions are related through (hx , hy) 5 even larger Ar , provided that the corresponding directional
(Hx/Gr , Hy/Gr), where Gr is an arbitrary integer interface permeability has an appropriately reduced variation. How-
ratio in this analysis (e.g., Gr 5 4 in Fig. 2) and the grid ever, in general, for larger variations in grid aspect ratio
aspect ratio Ar 5 hy/hx (Fig. 2). The global indices of and/or permeability a correction is essential; cf. Section 6.
the fine cells and coarse cell which enter this analysis are
denoted by a, b, and c (Fig. 2). Appropriate normal deriva- 3. EXPLICIT ERROR CORRECTION AT AN
tive approximations at the faces of cells a and b of Fig. 2 ADAPTIVE GRID INTERFACE
are given by

Error correction by polynomial interpolation of the pres-
sure between neighboring cells tangential to an h-grid in-( pc1 2 pa)/Dx (2.4a)
terface is proposed in [1], for a fixed grid with a single

( pc2 2 pb)/Dx, (2.4b) level of local refinement. Referring to Fig. 3 for the case
Gr 5 2, replacement of ( pc 2 pb)/Dx by

where pc1 and pc2 are the pressures at a distance Hy(1 2
( pc2 2 pb)/Dx (3.1)1/Gr)/2 above and below coarse cell center c and Dx 5

Hx(1 1 1/Gr)/2. By Eq. (2.3) the standard difference ap-
(where pc6 are the interpolated pressures) reduces the ve-proximations at the faces of cells a and b are ( pc 2 pa)/Dx
locity error tvel from O(1) to O(h), where (due to theand ( pc 2 pb)/Dx. Subtracting these respective differences
interpolant error)from Eq. (2.4) reveals that the respective errors in pressure

gradient at the faces of cells a and b due to nonorthogo-
t6

vel 5 6hy Arpyykx/4 1 O(h2
y) (3.2)nality are given by

and the local truncation error is reduced from O(1/h) to
( pc6 2 pc)/Dx. (2.5)

O(1) at cells a and b, respectively. This correction proce-
dure has been generalized to dynamic grids with n levels
of refinement [2]. If neighboring cells share the same valueIn calculating the leading truncation errors in the pressure

equation discretisations at cells a, b, Eq. (2.5) contributes of permeability, then use of the second-order linear inter-
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4. FLUX CONTINUOUS APPROXIMATION

Since flux and pressure are continuous and the coeffi-
cient can be discontinuous, the pressure field can have
discontinuous gradients at a cell edge. Therefore polyno-
mial intepolation is not strictly valid across neighboring
cell faces. Continuous pressure and flux are built into the
discrete cell centered approximation as follows: A mean
value of pressure pf is introduced at a cell face between
neighboring cells (Fig. 4) and is used with adjacent cell
centered pressures, to construct a continous piecewise lin-

FIG. 3. Correction by interpolation.
ear approximation to pressure in each cell. Equating the
resulting one-sided flux approximations,

polation between the cell centered pressures following [1]
kr

pr 2 pf

Dxr
5 kl

pf 2 pl

Dxl
(4.1)is a valid approximation. For the case of Fig. 3, this re-

sults in

ensures flux continuity to O(h). From Eq. (4.1) the pressure
pc2 5 (3pc 1 pd)/4. (3.3) and flux at the cell face are given by

However, for a generally varying permeability field pc2 pf 5 ( plkl/Dxl 1 prkr/Dxr)/(kl/Dxl 1 kr/Dxr) (4.2)must be given by Eq. (4.4) as explained in the next section.
A fully implicit correction results in conditional diagonal

f 5 2
2krkl( pr 2 pl)

(krDxl 1 klDxr)
. (4.3)dominance and a loss of symmetry in the pressure matrix,

together with increased complexity in the connectivity.
Asymmetry is demonstrated by referring to Fig. 3; the The coefficient in Eq. (4.3) is the harmonic mean of perme-
discrete pressure equation for cell b involves data from abilities commonly used in reservoir simulation [17]. Re-
cell d, whereas the converse is not true. turning to the correction of Section 3, for a variable perme-

Alternatively an explicit correction can be incorporated ability field, a cell face value of pressure can be defined
into the standard scheme by writing the correct normal at F in Fig. 3 using Eq. (4.2). Interpolation can then be
gradient as the sum of the standard cell centered difference performed between the pressure at the cell center c and
and a tangential correction, cell face F, respectively. The resulting interpolant corre-

sponding to Eq. (3.3) is
( pc2 2 pb)/Dx 5 ( pc 2 pb 1 pc2 2 pc)/Dx, (3.4)

pc2 5 ((2kc 1 kd)pc 1 kdpd)/2(kc 1 kd). (4.4)
which can be approximated in time as

Use of Eq. (3.3) results in a conditionally diagonally domi-
( pn11

c 2 pn11
b 1 pn

c2 2 pn
c )/Dx (3.5) nant matrix for implicit implementation, whereas use of

Eq. (4.4) results in unconditional diagonal dominance for
and using Eq. (3.5) in the definition of the total velocity locally isotropic coefficients (proof in Appendix 1).
at the interface maintains local conservation and leaves
the pressure matrix unchanged, with the correction added 5. FLUX CONTINUOUS CORRECTION AT AN
to the right-hand side of the standard discrete pressure ADAPTIVE GRID INTERFACE
equation. The method is implemented as a deferred correc-
tion technique, with each dynamic change in the grid; the A new approximation of the flux at an adaptive grid
standard uncorrected pressure equation is solved to pro- interface is introduced which gives rise to a pressure equa-
vide an initial ‘‘predicted’’ pressure field; then a second
iteration is performed using the corrected pressure equa-
tion via Eq. (3.5).

A significant improvement in results is obtained with
this approach. However, while this correction removes the
O(1/h) error leaving an O(1) local spatial truncation error,

FIG. 4. Flux continuity between cells in 1D ( f is at the cell face).time lagging introduces an additional O(1) error.
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the right-hand side resulting in two equations for the two
mean face pressures p1 and p2 , respectively,

kxa

( p1 2 pa)
hx/2

5 kxc

( pc 2 ( p1 1 p2)/2)
hx

(5.2)
kxb

( p2 2 pb)
hx/2

5 kxc

( pc 2 ( p1 1 p2)/2)
hx

,

FIG. 5. Flux continuity at an adaptive interface (ratio 5 2).
where (hx , hy) are the fine cell dimensions and kxa

is the
horizontal permeability of cell a. This procedure is a gener-
alization at an h-adaptive interface of the 1D flux continu-

tion discretization with the following properties: ous derivation of Section 4. Eliminating p1 and p2 in terms
of pa , pb , and pc yields a flux(1) Continuous flux and pressure at an h-adaptive in-

terface

(2) Symmetric positive definite discrete matrix f 5 24
hy

hx

kxa
kxb

kxc
( pc 2 ( pa 1 pb)/2)

(4kxb
kxc

1 kxa
(kxb

1 kxc
))

. (5.3)
(3) Diagonally dominant discrete matrix for locally iso-

tropic coefficients
Properties (2) to (5) are illustrated by considering matrix(4) Supra-convergence to O(h) is demonstrated for an
contributions at the interface. As in Section 2 the discreteadaptive interface
scheme is constructed in integral form. Away from the

(5) Retains local conservation and same support and interface we have the usual scheme and therefore those
matrix structure as the standard finite volume scheme matrix components are symmetric, positive semi-definite,

(6) Fully implicit implementation and diagonally dominant.
The flux contributions to cells a, b, and c from the adja-(7) Generalisation to arbitrary grid interface ratio re-

cent interface cells (b and c for a, a and c for b, and a andfinement.
b for c) (Fig. 5) are respectively

The aim here is to construct a flux which is orthogonal to
the interface while maintaining a purely local approxima- 2wabc( pc 2 ( pa 1 pb)/2) 1 wab( pa 2 pb) (5.4a)
tion, thereby avoiding the complexities which arise with

2wabc( pc 2 ( pa 1 pb)/2) 2 wab( pa 2 pb) (5.4b)the tangential interpolation of Section 3. A mean flux is
constructed at the midpoint face between two neighboring 2wabc( pc 2 ( pa 1 pb)/2), (5.4c)
cells of the same level of refinement at an h-adaptive grid
interface. For illustration assume the coefficient takes the where
same value in all three cells forming the interface (Fig. 5);
then a mean normal interface velocity can be defined by

wabc 5 4
hy

hx

kxa
kxb

kxc

(4kxb
kxc

1 kxa
(kxb

1 kxc
))

(5.5a)

Vuface 5 2
2

3h
k Spc 2

( pa 1 pb)
2 D . (5.1)

and

This flux is constant over faces 1 and 2 (Fig. 5) and has
the advantages of both, removing the O(1) error in velocity wab 5 2

hx

hy

kya
kyb

(kya
1 kyb

)
(5.5b)

(Appendix 2) while retaining local conservation and sup-
port of the standard finite volume scheme.

and the factor of 2 appears in the coefficient of flux Eq.
Flux and Pressure Continuity (5.4c) since the face of the coarse cell is of length 2hy .

For generally varying pressure equation coefficients the
Local Conservation

flux is constructed such that both pressure and flux are
continuous across faces 1 and 2 (Fig. 5). These constraints The new interface approximation has been specifically

constructed to remove the O(1) velocity error and ensureare achieved by introducing mean pressures at 1 and 2,
then applying a piecewise linear approximation to pressure local conservation (i.e., a finite volume scheme is retained)

which is easily demonstrated by inspection of Eq. (5.4);over the resulting triangle 1,2,c (Fig. 5). The fluxes on the
left-hand side of faces 1 and 2 are equated to the flux on referring to Fig. 5 both the addition of the flux components
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between cells a and b tangential to the interface and flux and from Eq. (5.6a), (5.6b) this is true if
components between cells a, b, and c normal to the inter-
face sum to zero as required.

wab $
wabc

2
, (5.8)

Symmetric Matrix

using the definitions in Eq. (5.5) it follows that Eq. (5.8)Assembling interface contributions of matrix M we find
is satisfied ifthat for row a,

Maa 5
wabc

2
1 wab , Mac 5 2wabc , Mab 5

wabc

2
2 wab ; hx

hy

kya
kyb

(kya
1 kyb

)
$

hy

hx

kxa
kxb

kxc

(4kxb
kxc

1 kxa
(kxb

1 kxc
))

. (5.9)

(5.6a)

Strict inequality holds in Eq. (5.9) iffor row b,

kya
$ A2

rkxa
, kyb

$ A2
rkxb

(5.10)
Mbb 5

wabc

2
1 wab , Mbc 5 2wabc , Mba 5

wabc

2
2 wab ;

in particular for equality in Eq. (5.10) with unit aspect(5.6b)
ratio, it follows that the matrix is diagonally dominant
subject to locally discrete isotropic spatially varying coeffi-and for row c,
cients. The condition of Eq. (5.8) ensures that the new
scheme has an M matrix, which is also important in theMcc 5 2wabc , Mca 5 2wabc , Mcb 5 2wabc ; (5.6c)
case of solvers based on multigrid [18].

therefore
Supra-Convergence

Mab 5 Mba , Mca 5 Mac , Mcb 5 Mbc When the solution error converges faster than the dis-
cretization error the scheme is supra-convergent [19]. Su-

and, thus, the matrix is symmetric. pra-convergence of the cell centered scheme on a regular
nonuniform grid without local refinement has been provenPositive Definite Matrix
via the mixed finite element formulation [20] and by con-

Consider the contributions from the interface to the struction of a second-order grid function [21].
energy-inner product PTMP, where P is an arbitrary vector. Supra-convergence at an adaptive grid interface (shown
Assembling the appropriate contributions from cells c, a, in Appendix 2) is demonstrated by transforming the new
and b, we obtain nonstandard interface operators acting on cell centered

values into classical five point operators acting on mean
2pcwabc( pc 2 ( pa 1 pb)/2) 2 pa(wabc( pc 2 ( pa 1 pb)/2) values. Convergence with respect to mean values and thus

cell centered values follows.2 wab( pa 2 pb))
(5.7) The leading truncation error in velocity at the center of

2 pb(wabc( pc 2 (pa 1 pb)/2) 1 wab( pa 2 pb)) the fine cell faces 1 and 2 (Fig. 5) is shown below (Appendix
2) to be of O(h) compared to O(1) for the standard scheme5 2wabc( pc 2 ( pa 1 pb)/2)2 1 wab( pa 2 pb)2

of Section 2 (cf. Eq. (2.6)). The new flux continuous scheme
eliminates the O(1/h) discretization error leaving a leadingwhich is bounded below by zero. Use of the Dirichlet
local spatial truncation error of O(1) in the pressure equa-condition ensures PTMP . 0 for any P. We conclude that
tion discretization at the interface. Supra-convergence tothe matrix is symmetric positive definite, which guarantees
O(h) is demonstrated in Appendix A2 for an adaptiveexistence and uniqueness of the solution for general dis-
grid interface.crete coefficients and matrix inversion by standard solvers.

Scheme SupportPositive Diagonal Dominance

Definition of the new correction relies on nearestAgain it is only necessary to consider matrix elements
neighbours (Eq. (5.4)); hence, support of the scheme isfor the interface. Diagonal dominance with positive diago-
unchanged. As a consequence of properties (2) and (6),nal and negative (or zero) off-diagonal coefficients (and
any matrix solver applicable to the standard finite volumetherefore a discrete maximum principle) follows if
scheme is applicable to the new correction scheme so that
implicit inversion is ensured.Maa $ uMabu 1 uMacu
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6. FLOW EQUATIONS AND RESULTS

In the first subsection 6a computed convergence rates
for single phase homogeneous and heterogeneous exam-
ples are shown for the three types of pressure equation
discretisation presented in this paper.

In the second subsection 6b an example reservoir simula-
tion equation set and problems are presented, together
with the solutions computed by the standard uncorrected
and newly corrected complete adaptive higher order hyper-
bolic elliptic method. The results in this section show whenFIG. 6. Flux continuity at an adaptive interface (arbitrary ratio).
the uncorrected scheme can be of use and when a correc-
tion is required.

6a. Convergence Rates Corresponding to the PressureAlternative Procedure
Equation Discrete Operators

Returning to Eqs. (5.2) there is an alternative way to
Convergence of the concentration equations on gridsproceed; the interface (mean) pressures can be regarded

with local refinement is a separate issue beyond the scopeas additional degrees of freedom and the flux continuity
of this paper and will be considered in a future paper [23].equations can be added to the system of discrete equations

Convergence rates are presented for the velocities andto be solved for the pressures (a similar approach has been
pressures obtained using the three types of discretizationtaken for disjoint grids at faults [22]). However, while this
discussed above on grids with local refinement. In orderprocedure also increases accuracy and proves to be effec-
to see as clearly as possible the effects of the discretetive for removing the interface error, the number of un-
operators under identical conditions, convergence ratesknowns increases by Gr per local interface (of which there
are studied for the pressure equation alone; i.e., a steadyare many in a typical adaptive grid, here Gr 5 2 per local
state problem is solved in isolation from the concentrationinterface in 2D). This hybrid approach adds further com-

plexity to the data structure in order to store cell face
and cell centered pressures. Further examination of this
procedure and further comparisons will be reported in [23].

Extension to Grids of Larger Interface Ratio

For adaptive grids of arbitrary grid interface ratio Gr ,
a flux continuous approximation can be constructed by
introducing Gr interface pressures and Gr 2 1 triangles
each connected to the coarse grid cell center as in the
example of Fig. 6. Piecewise constant fluxes corresponding
to appropriate adjacent triangles are equated to their fine
grid flux counterparts on the left-hand side of the interface
as illustrated in Appendix A3.

Adaptive Pressure Matrix Inversion

The conjugate gradient method with diagonal precondi-
tioning is used to invert the symmetric pressure matrix in
this work. The explicit nature of the conjugate gradient
method is exploited, since the method only involves the
pressure matrix elements through explicit operations of
the discretization operator on residual vectors, it is easily
incorporated into an adaptive code where the discrete op-
erator is already assembled. This approach avoids matrix
storage issues, requires no knowledge of the matrix band

(Homogeneous)

(Heterogeneous)

structure and will generalize to any solver based on explicit
FIG. 7. Kx permeability maps for convergence tests.matrix multiply operations.
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FIG. 8. a. Homogeneous partial grid sequence; b. Heterogeneous partial grid sequence.

equations. A sequence of static locally refined grids is used identical with respect to each grid level used for testing
convergence of the scheme. In each case the uniform gridfor convergence tests. For a given coarse permeability map

each grid is locally refined according to the local variation solution is computed on a 64 3 64 grid and the log of the
residual of the difference between the locally refined gridin permeability and the sequence of grids is defined by

allowing each new grid to have one extra level of local solutions (4 3 4 to 64 3 64) and the 64 3 64 uniform fine
grid solution is plotted against log N (where 4 # N # 64)refinement compared to its predecessor.

Solid wall (zero flow) conditions are imposed on all to demonstrate convergence rates. The convergence rates
of all schemes in L1 , L2 , and Ly lead to the same conclu-boundaries except the top left-hand cell where flux (or

flow rate) is specified and the bottom right-hand cell where sions in terms of scheme classification; however, the L1

convergence rates are the most uniform and these are pre-a Dirichlet condition is imposed in order to allow out flow.
The latter cell containing the (sink) Dirichlet condition is sented.
always refined to the maximum level considered in order
to remove outflow boundary condition effects from the

Homogeneous, Ar 5 1, Kr 5 1
local refinement study.

Two types of permeability variation are considered; ho- Convergence rates for velocity show that for a unit aspect
ratio grid with isotropic permeability all schemes producemogeneous and heterogeneous. They are shown in Fig. 7

(the permeability anisotropy ratio denoted by kr 5 ky/kx approximately O(h) convergent velocities, although the
corrected schemes do show a slight improvement in conver-is defined below for each case) and the sequence of locally

refined grids for (four of the five levels) levels 4 to 32 are gence (Fig. 9). It is interesting to note, particularly for the
coarser grid levels, that the velocity errors for all schemesshown in Figs. 8a and 8b, respectively. In each case the

permeability map is used to define the permeabilities on are almost equal, showing that the correction has little
effect which might be expected as the leading error coeffi-a 4 3 4 coarse cell grid. These values are then used to define

finer grid permeabilities, thus ensuring that the problem is cient in Eq. (2.8) is minimised with KrAr 5 1. The pressure
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rection is nearly O(h) and the new scheme is O(h) in
pressure and velocity.

Heterogeneous, 4 # Ar # 12, Kr $ 8

In the heterogeneous case the difference in performance
of the schemes increases. Referring to Fig. 12, the explicit
correction still indicates convergence, albeit somewhat less
than O(h). The new scheme still firmly shows convergence,
now nearly O(h) for velocity and pressure, while the uncor-
rected scheme fails to indicate convergence in velocity
and diverges in pressure. The convergence rates presented
demonstrate supra-convergence of the corrected flux ap-
proximations. The new scheme displays the best overall
rates of convergence in pressure and velocity in all cases.

The analysis in this paper shows that the new scheme is
supra-convergent. The formal discrete truncation error of
the corrected scheme is O(1) while the solution error and
velocity error at a single interface is shown to be at most
O(h). Convergence rates are presented for a variety of
problems and convergence is always obtained by the
new scheme.

FIG. 9. Velocity pressure convergence: Unit grid aspect ratio, iso-
tropic permeability.

errors are greater than the velocity errors in all cases;
however, the new scheme clearly shows O(h) convergence.

Homogeneous, Ar 5 8, Kr 5 1/8

For a grid aspect ratio Ar 5 8 and permeability ratio of
1/8 the standard scheme again exhibits convergence,
slightly less than O(h) while both corrections show velocity
convergence slightly better than O(h) (Fig. 10). The new
scheme again shows O(h) pressure convergence. The error
coefficient (2.8) is minimized as in the unit aspect ratio
case with KrAr 5 1 and the behavior observed in both of
these cases is consistent with the full simulation problem
described below.

Homogeneous, Ar 5 8, Kr 5 1

For a grid aspect ratio Ar 5 8 and isotropic permeability
the standard uncorrected scheme shows a deterioration in
convergence in pressure and velocity (Fig. 11) (the leading
error increases by a factor of 8 (cf. Eq. (2.8)), while the FIG. 10. Velocity pressure convergence: Grid aspect ratio 5 8; Aniso-

tropic permeability ratio 5 1/8.corrected schemes maintain convergence. The explicit cor-
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corresponding source terms. The jth phase velocity is a
function of pressure p and is given by

vj 5 2klj(=p 1 rjg=h), (6.2)

where lj 5 krj/ej is the phase mobility; krj , rj , and ej are
the respective relative permeability, density, and viscosity;
k is the permeability tensor; g is the acceleration due to
gravity; and h is the height. We assume krj is quadratic in
saturation sj and viscosity is constant. The flux is expressed
in terms of the total velocity by eliminating the pressure
gradient from Eq. (6.2) to give

vj 5 fj(Vt 1 lkg=h(r2 2 r1)),

where fj 5 lj/(l1 1 l2) is the fractional flow and k ? j.
The pressure equation is defined by Eq. (6.1b) and the
system equation (6.1) is solved sequentially via a total
velocity formulation [14, 24]. The discrete adaptive scheme
employed for the hyperbolic components of the system is
described in [14].

FIG. 11. Velocity pressure convergence: Grid aspect ratio 5 8; Iso-
tropic permeability.

6b. Practical Effects of the Interface Error

The practical effects of the interface errors discussed in
the above sections are clearly demonstrated in the follow-
ing examples. The reservoir simulation equation set consid-
ered here is stated below. A detailed description of the
derivation can be found in [17], for example. The flow
is assumed to be incompressible; capillary pressure and
dispersion are neglected; porosity and total permeability
are held constant. The flow equations studied here are

­sj/­t 1 = ? vj 5 qj (6.1a)

= ? Vt 5 q

(6.1b)O2
j51

sj 5 1,

where sj and vj denote the phase saturations and velocities,
respectively; Vt 5 v1 1 v2 is the total velocity; v1 and v2 FIG. 12. Velocity pressure convergence: Heterogeneous 4 , Grid

aspect ratio , 12; Anisotropic permeability ratio 5 8.are gas and oil phase velocities; and q is the sum of the
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voir. Sample results are shown for three variants of the
problem.

Uncorrected Scheme, Ar 5 1, Kr 5 1

Despite the presence of an O(1/h) truncation error the
standard scheme of Section 2 can produce extremely good
results for certain choices of grid aspect ratio and aniso-
tropic permeability ratio.

In the first case involving a unit aspect ratio grid and
isotropic permeability field excellent agreement between
the adaptive scheme (with uncorrected pressure equation)
(Fig. 13a) and the uniform grid scheme (Fig. 13c) is ob-
tained.

Uncorrected Scheme, Ar 5 8, Kr 5 1/8

Good agreement is maintained in the second case (Fig.
14), where the grid aspect ratio Ar 5 8 and the anisotropic
permeability ratio Kr 5 Kv/Kh 5 1/8. In both cases the
product KrAr 5 1 which minimizes the leading error coef-
ficient of Eq. (2.8). These findings are consistent with the
previous section 6a, in terms of when the uncorrected

a b

c

scheme exhibits good convergence behavior.
FIG. 13. Saturation field: Unit grid aspect ratio; Isotropic permeabil-

ity. Dynamically adaptive simulation. Uncorrected scheme vs. Uniform Uncorrected Scheme with Large Error, Ar 5 8, Kr 5 1
grid.

In a third variant of the problem the grid aspect ratio
Ar 5 8, while the permeability field is isotropic. The leading
error coefficient has now increased by a factor of 8. The

The test case presented consists of a rectangular reser-
voir vertical cross section initially full of oil. Gas is injected
in the top left-hand grid block and a production well is
inserted in the bottom right grid block. The initial condi-
tions are

s1 5 0, s2 5 1

and solid wall boundary conditions

­p/­n 5 0, ­s/­n 5 0

apply on all walls, except at the injection and production
wells, where flux and pressure are specified respectively.
The pressure boundary conditions are identical to those in
the above section 6a. The gas flows along the top of the
reservoir under gravity until it reaches the right-hand solid
wall, where the shock front moves towards the producer
due to the high mobility of the gas (oil to gas viscosity
ratio). The front breaks through at the producing well
before much of the oil is recovered, giving rise to a ‘‘cone’’
at the producer.

Results are illustrated by gas saturation contours plotted
at 15 uniform intervals and the output time is normalised FIG. 14. Saturation field: Grid aspect ratio 5 8; Anisotropic perme-
with respect to pore volumes (pv) injected, which is the ability ratio 5 1/8. Dynamically adaptive simulation. Uncorrected scheme

vs Uniform grid.ratio of gas injected to available fluid volume of the reser-
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The corrected schemes perform extremely well, both in
terms of convergence and a full simulation comparison
between the adaptive and uniform grid solutions.

7. CONCLUSIONS

Classical cell centered finite volume discretization of the
diagonal tensor pressure equation on an h-adaptive grid
results in an O(1) error in velocity and an O(1/h) leading
truncation error in the discrete pressure equation at the
grid interface dividing grids of differing levels of refine-
ment. The error is due to representing the flux normal
to the interface by a nonorthogonal difference which is
inherent in the standard cell centered approximation. The
error coefficient is proportional to permeability grid aspect
ratio, grid interface ratio, and tangential pressure gradient.
For larger grid aspect ratios and significant tangential flow
gradients, the interface error has a severe impact on the re-
sults.

A new flux continuous locally conservative approxima-
tion is presented, which removes the interface error and

FIG. 15. Saturation field: Grid aspect ratio 5 8; Isotropic permeabil- has a symmetric positive definite matrix for general discrete
ity. Dynamically adaptive simulation. Uncorrected scheme vs Uniform
grid.

solution and grid produced by the standard adaptive
scheme are compared with the uniform grid solution in
Fig. 15, where breakthrough of gas at the producer has
just occurred at this time (15a). The interface error has a
severe impact on the results with large local errors domi-
nating the solution (15b). The error is reflected in the
dynamic adaptivity where the grid is refined according to
the spurious position of the distorted shock front (Fig. 15c).

Interface Corrections, Ar 5 8, Kr 5 1

Comparison of both correction schemes with the uni-
form grid scheme is shown in Fig. 16 at 0.2 pv, where flow
is transient. Results from the explicit correction scheme
(Section 3), show a slight time lag in solution (Fig. 16a
contours near the producer), which is attributed to the
deferred correction. Results of the new flux continuous
scheme (supra-convergent correction of Section 5) shown
in Fig. 16c are in excellent agreement with the uniform
grid scheme (Fig. 16e); the corresponding adaptive grids
are shown in Figs. 16b and d.

By 0.6 pv (near steady state flow and ‘‘cone’’ clearly
visible) very good agreement between both of the cor-
rected adaptive schemes and the uniform grid scheme is
obtained (Fig. 17). The behavior observed is consistent
with the convergence study, where for the equivalent case
the standard approximation barely shows sign of conver-
gence (Fig. 11) and for the full simulation the uncorrected FIG. 16. Saturation field: Grid aspect ratio 5 8; Isotropic permeabil-

ity. Dynamically adaptive simulation. Corrected schemes vs Uniform grid.scheme errors dominate the computed solution (Fig. 15b).
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dynamically adaptive simulations with transient flow are
entirely consistent with the contrast in computed conver-
gence rates. For problems with a minimum error coefficient
the uncorrected standard scheme produces acceptable re-
sults; however, if the error coefficient is increased (for
example, by choosing larger aspect ratios), the computed
shock front is completely distorted by the grid-induced
errors. The new adaptive scheme removes the errors and
produces results which are comparable with equivalent
uniformly fine grid simulations for all aspect ratio tests.

APPENDIX 1: DIAGONAL DOMINANCE (TEST FOR
STANDARD CORRECTION)

The correction of Section 3 involves tangential interpola-
tion of pressure to construct the appropriate normal flux.
Away from the interface the standard scheme and proper-
ties prevail, thus only examination of the interface flux is
required. The interpolated pressure is (1 2 b)pa 1 bpb ,
where b is the interpolation coefficient and the corrected
interface flux for cell a (Fig. 3 with c, d, b, replaced by a,
b, c) is

wab( pa 2 pb) 1 wac((1 2 b)pa 1 bpb 2 pc),

where

wab 5 2hxkya
kyb

/hy(kya
1 kyb

),

wac 5 2hykxa
kxc

/hx(kxa
1 2kxc

).FIG. 17. Saturation field: Grid aspect ratio 5 8; Isotropic permeabil-
ity. Dynamically adaptive simulation. Corrected schemes vs Uniform grid.

Contributions to matrix coefficients of row a are

Maa 5 wab 1 (1 2 b)wac , Mab 5 bwac 2 wab ,
anisotropic coefficients. Diagonal dominance is demon-

Mac 5 2wac .strated for discrete locally isotropic spatially varying coef-
ficients. Supra-convergence is demonstrated to O(h) for

Diagonal dominance follows ifan adaptive grid interface. The local fine cell interface
velocity is formally O(h) accurate. Support of the standard wab $ bwac .
approximation is retained resulting in an easily imple-
mented correction. Linear interpolation equation (3.3) with b 5 1/4, results

The new flux continuous correction is contrasted with a in conditional diagonal dominance for spatially varying
previously proposed correction, which requires increased locally anisotropic or isotropic coefficients. However, for
support and is consequently complex to implement in a locally isotropic coefficients (kx 5 ky) use of Eq. (4.4) with
dynamic multilevel setting and has a nonsymmetric matrix. b 5 kxb

/2(kxa
1 kxb

) results in
While both schemes remove the leading error the new
scheme provides the most accurate results. 2(2 1 kxa

/kxc
) $ A2

r ,
Computed convergence rates are presented for both of

the corrected schemes and the uncorrected scheme. While demonstrating unconditional diagonal dominance for as-
the standard scheme exhibits convergence for problems pect ratios less than 2.
where the error coefficient is minimized, the convergence
rates deteriorate as the error coefficient increases. The new APPENDIX 2: SUPRA-CONVERGENCE
scheme exhibits the best convergence rates for all test cases
in homogeneous and heterogeneous domains. By transforming the new nonstandard interface opera-

tors acting on cell centered values into classical five pointThe contrast in results obtained by all schemes for fully
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operators acting on mean values supra-convergence at an ity vij21/2 , so that, in addition to the central velocity error,
a leading truncation error in velocity (denoted by t 6

vel ,adaptive grid interface is demonstrated with respect to
mean values and then cell centered values. where 6 refers to the pair of fine interface cells) with

respect to the fine cell faces is introduced. Performing aFor simplicity consider the new discretization of the pres-
sure equation at a single interface and assume constant Taylor series expansion about the center of the interface

and rearranging yieldscoefficients (although the analysis below will apply with
sufficiently smooth variable coefficients). The discrete op-
erator is obtained by applying the Gauss flux Theorem to

t 6
vel 5 vj6 2 vij21/2 5 6

hy

2
vy 1

h2
y

8
vyy 1 O(h3

y). (A.3)Eq. (2.1) over each cell and introducing an appropriate
approximation of the flux at each cell face. For an adaptive
grid the new flux approximation of Eq. (5.3) is introduced Since this velocity error is strictly local to the interface,
at any adaptive interface. Referring to Fig. 5 with a and b then when calculating the truncation error LhP (where P
replaced by fine grid indices (i, j), (i, j 2 1), and c replaced is the exact solution), with respect to the fine cells i, j and
by coarse grid indices (I 1 1, J), respectively, the discrete i, j 2 1, a discrete difference in velocity normal to the
operator for fine cell (i, j 2 1) is interface creates an O(1) truncation error. and thus the

interface flux approximation contributes a leading trunca-
tion error ofLh ph 5 S2

2
3

hy

hx
kx( pI11,J 2 ( pij 1 pij21)/2)

t 6
h 5

t 6
vel

hx
5 6

1
2

Ar pxykx 1
h
8

Ar pxyykx (A.4)2 ky
hx

hy
( pi, j 2 pij21)

(A.1a)
to each of the fine cells. While the new flux approximation1 ky

hx

hy
( pi, j21 2 pij22)

removes the O(1/h) error convergence cannot be claimed
according to (A.4) as t 6

h is O(1).
However, let us for the moment return to the interface1 kx

hy

hx
( pi, j21 2 pi21, j21)D@hxhy 5 0

velocity approximation Eq. (5.3). Working with the mean
fine grid values and coarse grid values the discrete velocity

and for fine cell (i, j), can be written as

Lh ph 5 S2
2
3

hy

hx
kx(pI11,J 2 (pij 1 pij21)/2) Vij21/2 5 2

2
3

hy

hx
kx( pI11,J 2 pij21/2), (A.5)

2 ky
hx

hy
( pi,j11 2 pij) 1 ky

hx

hy
( pi, j 2 pij21) (A.1b) where

pij21/2 5 ( pi, j 1 pi, j21)/2.
1 kx

hy

hx
( pi, j 2 pi21, j)D@hxhy 5 0,

With respect to the coarse grid cell (I 1 1, J) the discrete
scheme iswhere (hx , hy) are the fine cell dimensions and (kx , ky) are

the respective horizontal and vertical permeabilities. The
discrete conservative operator Lh is related to the symmet-

LHpH 5S4
3

hy

hx
kx( pI11,J 2 pij21/2)ric pressure matrix M by

diag(A)Lh 5 M, (A.2)
2 ky

Hx

Hy
( pI11,J11 2 pI11,J) 1 ky

Hx

Hy
( pI11,J 2 pI11,J21)

where diag(A) 5 hxhy is the diagonal matrix of cell areas
and Lh is symmetric in shape and nonsymmetric in coeffi- 2 kx

Hy

Hx
( pI12,J 2 pI11,J)D@HxHy 5 0

cients for nonuniform grids. The first terms on the right-
hand side of (A.1a) and (A.1b) are the same interface flux;
the other terms are standard flux approximations. which is a classical nonuniform grid five point approxima-

tion, where H refers to the coarse grid with cell dimensionsThe local fine grid interface velocities with respect to
cells i, j and i, j 2 1 (denoted here by vj6) at cell faces 1 (Hx , Hy). The error is second-order supra-convergent [20,

21] (eI11,J 5 O(h2)); thus the velocity equation (A.5) isand 2 are both approximated by the central interface veloc-
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FIG. 18. Supra-convergence: Support of correction transformed to classical five point scheme interface (i, j 2 1), (i, j).

second-order (super-convergent) at the midpoint between is the well-known error on a regular nonuniform grid [17]
(here hxi

5 hxi21
5 hx , hxi11

5 2hx 5 Hx , and hyi, j11
2(i, j 2 1/2) and (I, J).

This suggests examining the mean values of the solution 2hyi
1 hyij21

5 0 as hyi, j
is constant in the y direction) and

on the fine grid. Refering to Fig. 18, a mean discrete opera- this scheme produces an O(h2) supra-convergent approxi-
tor (denoted here by eLh) is obtained by adding the dis- mation [20, 21]. Hence,
crete equation (A.1a) for cell (i, j) to the adjacent discrete
equation (A.1b) for cell (i, j 2 1) at the interface to produce eij21/2 5 O(h2). (A.9)

The definition of the discretisation with respect to the
eLhphuij21/2 5 S2

2hy

3hx
kx( pI11,J 2 pij21/2) ‘‘mean’’ values is completed by defining an adjacent mean

operator by addition of the discrete equations for cells (i,
j) and (i, j 1 1) to give

1 kx
hy

hx
( pij21/2 2 pi21j21/2) (A.6)

eLhphuij11/2 5 S2
2hy

3hx
kx

1
2

( pI11,J11 2 pij13/2 1 pI11,J 2 pij21/2)
2 ky

hx

hy
( pi, j11/2 2 2pij21/2 1 pi, j23/2)D@hxhy 5 0,

1 kx
hy

hx
( pij11/2 2 pi21 j11/2) (A.10)

where pij61/2 , pij13/2 are mean values in the ‘‘y’’ direction
of the finer grid defined by

2 ky
hx

hy
(pi, j13/2 2 2pij11/2 1 pi, j21/2)D@hxhy 5 0.

pij11/2 5 ( pi, j11 1 pi, j)/2 (A.7)

The support of this discretisation with respect to cell cen-
The support of the mean discretisation with respect to the tered pressures is shown in Fig. 19b. Since Eqs. (A.6) and
cell centered pressures is shown in Fig. 18. With respect (A.10) are obtained by row operations acting on the origi-
to the mean values defined in (A.7) and the coarse grid nal discrete system they are equivalent to the original sys-
values pI11,J , Eq. (A.6) is a classical five point approxima- tem and will produce identical results when solving for cell
tion (with central node at (i, j 2 1/2) (Fig. 18c) for the centered pressures. Equation (A.10) can also be written
pressure equation on a nonuniform grid with mean error as a five point scheme in terms of mean values, together
equation with a residual term. This can be seen by introducing

the identities
eLhehuij21/2 5 tnuuij21/2 ,

As (pI11,J11 1 pI11,J) 5 PI11,J11/2 1 AsD2
ypI,J11/2 (A.11a)

where

on the coarse grid and

tnuuij 5
hxi11, j

2 2hxi, j
1 hxi21, j

4hxi, j

kxpxx

(A.8)
As(pij13/2 1 pij21/2) 5 pij11/2 1 AsD2

ypij11/2 (A.11b)

for mean fine grid values at stations which are aligned with1
hyi, j11

2 2hyi,j
1 hyi, j21

4hyi, j

kypyy
the coarse grid, where D2

y is a (central) second difference
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FIG. 19. Supra-convergence: Support of correction transformed to classical five point scheme interface (i, j), (i, j 1 1).

operator in y. Substituting (A.11) into (A.10) the discrete eij11/2 5 O(h). (A.15)
operator (A.10) can be rewritten as

By Eq. (A.7) in the field the mean errors are related to
the cell centered errors through

eLhpuij11/2 5 S2
2hy

3hx
kx( pI11,J11/2 2 pij11/2)

eij21/2 5
eij 1 eij21

2
1

h2

8
Pyy . (A.16)

1 kx
hy

hx
( pij11/2 2 pi21 j11/2)

At the boundary the mean error and cell centered discreti-
2 ky

hx

hy
( pi, j13/2 2 2pij11/2 1 pi, j21/2)D@hxhy zation error are identical by reflection conditions; thus the

cell centered errors are obtained from (A.16) by backward
substitution and they are at most O(h). From Eqs. (A.9)1

hx

6
kxA2

r
Dx

hx

D2
y

h2
y

pI11/2,J11/2
and (A.15) it follows that the mean errors are supra-con-
vergent in an oscillatory fashion such that O(h2) # eij #
O(h) and by (A.16) the cell centered leading errors are5 L̂h puij11/2 1 hx

kxA2
r

6
D3

yyx puij11/2 5 0, (A.12)
6O(h) with a mean value cancellation to O(h2) at each
local interface, e.g., at ij 2 1/2 (Fig. 18a). In addition, the

where L̂h is a classical nonuniform five point operator with actual interface velocity used in the discretization is defined
respect to the mean fine grid values and mean coarse grid by the difference of O(h2) mean values (corresponding to
values with central node at (i, j 1 1/2) (Fig. 19c), Dx is a (A.5)) which suggests that, while the formal pointwise error
central difference operator in x and D3

yyx is a third-order in velocity at the fine grid interfaces can only be O(h)
divided difference operator. Substitution of the exact solu- upon integration, the velocity error norm satisfies O(h2) #
tion into (A.12) reveals a truncation error, iV 2 Vhi # O(h).

APPENDIX 3: FLUX CONTINUITY FOR ARBITRARYeLhPuij11/2 5 L̂hPuij11/2 1 hx
kxA2

r

6
D3

yyxPuij11/2

(A.13) REFINEMENT RATIO

5 tnuuij11/2 1 hx
kxA2

r

6
Pyyx . Construction of a flux continuous scheme which main-

tains the standard scheme support and matrix structure is
illustrated below for Gr 5 4. Referring to Fig. 6 the equa-

Subtracting (A.12) from (A.13) and, rearranging, the error
tions which define the interface pressures p1, p2 are ob-

equation corresponding to Eq. (A.10) can be written as
tained by imposing flux continuity, using the piecewise
constant pressure gradient of triangle 1.2.r to define the
right-hand side flux at positions 1 and 2,L̂hehuij11/2 5 tnuuij11/2 1 hx

kxA2
r

6
D3

yyx puij11/2 , (A.14)

ka(p1 2 pa)/hx 5 kr(Apr 1 Bp1 1 Cp2)where the residual translates into an additional term of
kb(p2 2 pb)/hx 5 kr(Apr 1 Bp1 1 Cp2),O(h) on the right-hand side, together with the usual non-

uniform grid error (cf. (A.8)). Supra-convergence argu-
ments [20, 21] can be used to show that the mean error is where A, B, and C are standard geometric factors [25].

This procedure is generalised for an arbitrary interfacenow O(h); thus,



372 MICHAEL G. EDWARDS

10. W. A. Mulder and R. H. J. GmeligMeyling, ‘‘Numerical Simulationby using disjoint triangles (sharing common vertex r) to
of Two-Phase Flow Using Locally Refined Grids in Three-Spaceconstruct the flux which ensures that scheme support does
Dimensions,’’ SPE 21230, 1991 (unpublished).

not extend beyond nearest neighbours. Other ways of con-
11. F. X. Deimbacher and Z. E. Heinemann, ‘‘Time Dependent Incorpo-

structing flux continuous schemes are possible; however, ration of Locally Irregular Grids in Large Reservoir Simulation Mod-
scheme support is increased. els,’’ SPE 25260, in Twelfth SPE Reservoir Simulation Symposium,

New Orleans, LA, Feb 28–March 3, 1993.

12. M. G. Edwards, ‘‘A Dynamically Adaptive Higher Order GodunovACKNOWLEDGMENTS
Scheme For Reservoir Simulation In Two Dimensions,’’ in 3rd Euro-
pean Conference on the Mathematics of Oil Recovery, Delft UniversityI thank Mike Christie for his support of this project. I am grateful for
17–19 June 1992, edited by M. A. Christie, F. V. Da Silva, C. L.the referees, constructive comments, and review of this paper.
Farmer, O. Guillon, Z. E. Heinmann, P. Lemonnier, J. M. M. Regtien,
and E. van Spronson, p. 239.

REFERENCES 13. M. G. Edwards and M. A. Christie, ‘‘Dynamically Adaptive Godunov
Schemes With Renormalization for Reservoir Simulation,’’ SPE

1. P. Quandalle and P. Besset, ‘‘Reduction of Grid Effects Due to Local 25268, in Twelfth SPE Reservoir Simulation Symposium, New Or-
SubGridding in Simulations Using a Composite Grid,’’ SPE 13527, leans, LA, Feb. 28–Mar. 3, 1993, p. 413.
1985, in Reservoir Simulation Symposium, Dallas, TX, February 10– 14. M. G. Edwards, to appear.
13, p. 295. 15. M. G. Edwards, ‘‘A Flux Continuous Approximation of the Pressure

2. M. G. Edwards, ‘‘A Dynamically Adaptive Godunov Scheme for Equation for h-Adaptive Grids,’’ in MAFELAP, The Mathematics
Reservoir Simulation on Large Aspect Ratio Grids,’’ in Proceedings, of Finite Elements and Applications. Brunel, April 93, edited by
Conference on Numerical Methods for Fluid Dynamics, Reading J. R. Whiteman (Wiley, New York, 1993).
Univ., UK, April 7–10, edited by K. W. Morton and M. J. Baines. 16. L. Demkowicz and J. T. Oden, TICOM Report 88-02, Univ. of Texas,

3. P. A. Forsyth and P. H. Sammon, ‘‘Local Mesh Refinement and Austin, TX, 1988 (unpublished).
Modelling of Faults and Pinchouts,’’ SPE 13534, in Reservoir Simula- 17. K. Aziz and A. Settari, ‘‘Petroleum Reservoir Simulation,’’ Elsevier
tion Symposium, Dallas, TX, February 10–13, 1985, p. 267. Applied Science, New York.

4. D. U. von Rosenberg, ‘‘Local Mesh Refinement for Finite Difference 18. P. Wesseling, ‘‘Linear Multigrid Methods’’ in Multigrid Methods,
Methods,’’ SPE 10974, 1982 (unpublished). Frontiers in Applied Mathematics, edited by S. F. McCormick (SIAM,

Philadelphia, 1987).5. Z. E. Heinemann, ‘‘Using Local Grid Refinement in a Multiple-
Application Reservoir Simulator,’’ SPE 12255, 1983 (unpublished). 19. H. O. Kreiss, T. A. Manteuffel, B. Swartz, B. Wendroff, and A. B.

White, Math. Comput. 47, 537 (1986).6. D. K. Han, D. L. Han, C. Z. Yan, and L. T. Peng, ‘‘A More Flexible
Approach of Dynamic Local Grid Refinement for Reservoir Model- 20. A. Weiser and M. F. Wheeler SIAM J. Numer. Anal. 25, 351 (1988).
ing,’’ SPE 16014, 1987 (unpublished). 21. P. A. Forsyth and P. H. Sammon, Appl. Numer. Math. 4, 377 (1988).

7. M. L. Wasserman ‘‘Local Grid Refinement for Three Dimensional 22. I. Yotov, M. F. Wheeler, and T. Arbogast, private communication.
Simulators,’’ SPE 16013, 1987 (unpublished). 23. M. G. Edwards, in preparation.

8. G. H. Schmidt and F. J. Jacobs, J. Comput. Phys. 77, 140 (1988). 24. J. B. Bell, P. Colella, and J. A. Trangenstein, J. Comput. Phys. 82,
362 (1989).9. E. C. Nacul and K. Aziz, ‘‘Efficient Use of Domain Decomposition

and Local Grid Refinement in Reservoir Simulation,’’ SPE 20740, 25. E. B. Becker, G. F. Carey, and J. T. Oden, Finite Elements an Introduc-
tion, Vol. 1 (Prentice–Hall, Englewood Cliffs, NJ, 1981).1990 (1990).


